Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Microbes Infect ; : 105336, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38724001

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a group of heterologous populations of immature bone marrow cells consisting of progenitor cells of macrophages, dendritic cells and granulocytes. Recent studies have revealed that the accumulation of MDSCs in the mouse spleen plays a pivotal role in suppressing the immune response following JEV infection. However, the mechanisms by which JEV induces MDSCs are poorly understood. Here, it was found that JEV infection induces mitochondrial damage and the release of mitochondrial DNA (mtDNA), which further leads to the activation of TLR9. TLR9 deficiency decreases the M-MDSCs population and their suppressive function both in vitro and in vivo. Moreover, the increase of MHCⅡ expression on antigen-presenting cells and CD28 expression on T cells in TLR9-/- mice was positively correlated with M-MDSCs reduction. Accordingly, the survival rate of TLR9-/- mice dramatically increased after JEV infection. These findings reveal the connections of mitochondrial damage and TLR9 activation to the induction of M-MDSCs during JEV infection.

2.
J Med Virol ; 96(1): e29357, 2024 01.
Article in English | MEDLINE | ID: mdl-38235532

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global threat, exacerbated by the emergence of viral variants. Two variants of SARS-CoV-2, Omicron BA.2.75 and BA.5, led to global infection peaks between May 2022 and May 2023, yet their precise characteristics in pathogenesis are not well understood. In this study, we compared these two Omicron sublineages with the previously dominant Delta variant using a human angiotensin-converting enzyme 2 knock-in mouse model. As expected, Delta exhibited higher viral replication in the lung and brain than both Omicron sublineages which induced less severe lung damage and immune activation. In contrast, the Omicron variants especially BA.5.2 showed a propensity for cellular proliferation and developmental pathways. Both Delta and BA.5.2 variants, but not BA.2.75, led to decreased pulmonary lymphocytes, indicating differential adaptive immune response. Neuroinvasiveness was shared with all strains, accompanied by vascular abnormalities, synaptic injury, and loss of astrocytes. However, Immunostaining assays and transcriptomic analysis showed that BA.5.2 displayed stronger immune suppression and neurodegeneration, while BA.2.75 exhibited more similar characteristics to Delta in the cortex. Such differentially infectious features could be partially attributed to the weakened interaction between Omicron Spike protein and host proteomes decoded via co-immunoprecipitation followed by mass spectrometry in neuronal cells. Our present study supports attenuated replication and pathogenicity of Omicron variants but also highlights their newly infectious characteristics in the lung and brain, especially with BA.5.2 demonstrating enhanced immune evasion and neural damage that could exacerbate neurological sequelae.


Subject(s)
COVID-19 , Communicable Diseases , Nervous System Diseases , Animals , Mice , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Anal Bioanal Chem ; 415(23): 5745-5753, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37486370

ABSTRACT

Determining the quantity of active virus is the most important basis to judge the risk of virus infection, which usually relies on the virus median tissue culture infectious dose (TCID50) assay performed in a biosafety level 3 laboratory within 5-7 days. We have developed a culture-free method for rapid and accurate quantification of active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by targeting subgenomic RNA (sgRNA) based on reverse transcription digital PCR (RT-dPCR). The dynamic range of quantitative assays for sgRNA-N and sgRNA-E by RT-dPCR was investigated, and the result showed that the limits of detection (LoD) and quantification (LoQ) were 2 copies/reaction and 10 copies/reaction, respectively. The delta strain (NMDC60042793) of SARS-CoV-2 was cultured at an average titer of 106.13 TCID50/mL and used to evaluate the developed quantification method. Copy number concentrations of the cultured SARS-CoV-2 sgRNA and genomic RNA (gRNA) gave excellent linearity (R2 = 0.9999) with SARS-CoV-2 titers in the range from 500 to 105 TCID50/mL. Validation of 63 positive clinical samples further proves that the quantification of sgRNA-N by RT-dPCR is more sensitive for active virus quantitative detection. It is notable that we can infer the active virus titer through quantification of SARS-CoV-2 sgRNA based on the linear relationship in a biosafety level 2 laboratory within 3 h. It can be used to timely and effectively identify infectious patients and reduce unnecessary isolation especially when a large number of COVID-19 infected people impose a burden on medical resources.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Subgenomic RNA , COVID-19 Testing , RNA, Viral/genetics , RNA, Viral/analysis
4.
Antib Ther ; 6(2): 97-107, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37077474

ABSTRACT

BACKGROUND: Ending the global COVID-19 pandemic requires efficacious therapies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nevertheless, the emerging Omicron sublineages largely escaped the neutralization of current authorized monoclonal antibody therapies. Here we report a tetravalent bispecific antibody ISH0339, as a potential candidate for long-term and broad protection against COVID-19. METHODS: We report here the making of ISH0339, a novel tetravalent bispecific antibody composed of a pair of non-competing neutralizing antibodies that binds specifically to two different neutralizing epitopes of SARS-CoV-2 receptor-binding domain (RBD) and contains an engineered Fc region for prolonged antibody half-life. We describe the preclinical characterization of ISH0339 and discuss its potential as a novel agent for both prophylactic and therapeutic purposes against SARS-CoV-2 infection. RESULTS: ISH0339 bound to SARS-CoV-2 RBD specifically with high affinity and potently blocked the binding of RBD to the host receptor hACE2. ISH0339 demonstrated greater binding, blocking and neutralizing efficiency than its parental monoclonal antibodies, and retained neutralizing ability to all tested SARS-CoV-2 variants of concern. Single dosing of ISH0339 showed potent neutralizing activity for treatment via intravenous injection and for prophylaxis via nasal spray. Preclinical studies following single dosing of ISH0339 showed favorable pharmacokinetics and well-tolerated toxicology profile. CONCLUSION: ISH0339 has demonstrated a favorable safety profile and potent anti-SARS-CoV-2 activities against all current variants of concern. Furthermore, prophylactic and therapeutic application of ISH0339 significantly reduced the viral titer in lungs. Investigational New Drug studies to evaluate the safety, tolerability and preliminary efficacy of ISH0339 for both prophylactic and therapeutic purposes against SARS-CoV-2 infection have been filed.

5.
Talanta ; 258: 124462, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36963149

ABSTRACT

More than forty antigen testing kits have been approved to response the prevalence of SARS-CoV-2 and its variant strains. However, the approved antigen testing kits are not capable of quantitative detection. Here, we successfully developed a lateral flow immunoassay based on colloidal gold nanoparticles (CGNP-based LFIA) for nucleocapsid (N) protein of SARS-CoV-2 quantitative detection. Delta strain (NMDC60042793) of SARS-CoV-2 have been cultured and analyzed by our developed digital PCR and LFIA methods to explore the relationship between N protein amount and N gene level. It indicated that the linear relationship (y = 47 ×) between N protein molecule number and N gene copy number exhibited very well (R2 = 0.995), the virus titers and N protein amount can be roughly estimated according to nucleic acid testing. Additionally, detection limits (LODs) of nine approved antigen testing kits also have been evaluated according to the Guidelines for the registration review of 2019-nCoV antigen testing reagents. Only three antigen testing kits had LODs as stated in the instructions, the LODs of Kits have been converted into the N gene and N protein levels, according to the established relationships among virus titer vers. N gene and antigen. Results demonstrated that the sensitivity of nucleic acid testing is at least 1835 times higher than that of antigen testing. We expect that the relationship investigation and testing kits evaluation have the important directive significance to precise epidemic prevention.


Subject(s)
COVID-19 , Metal Nanoparticles , Nucleic Acids , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Gold , Nucleocapsid Proteins/genetics , Sensitivity and Specificity
8.
Virol Sin ; 37(6): 804-812, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36167254

ABSTRACT

The continuously arising of SARS-CoV-2 variants has been posting a great threat to public health safety globally, from B.1.17 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) to B.1.1.529 (Omicron). The emerging or re-emerging of the SARS-CoV-2 variants of concern is calling for the constant monitoring of their epidemics, pathogenicity and immune escape. In this study, we aimed to characterize replication and pathogenicity of the Alpha and Delta variant strains isolated from patients infected in Laos. The amino acid mutations within the spike fragment of the isolates were determined via sequencing. The more efficient replication of the Alpha and Delta isolates was documented than the prototyped SARS-CoV-2 in Calu-3 and Caco-2 â€‹cells, while such features were not observed in Huh-7, Vero E6 and HPA-3 â€‹cells. We utilized both animal models of human ACE2 (hACE2) transgenic mice and hamsters to evaluate the pathogenesis of the isolates. The Alpha and Delta can replicate well in multiple organs and cause moderate to severe lung pathology in these animals. In conclusion, the spike protein of the isolated Alpha and Delta variant strains was characterized, and the replication and pathogenicity of the strains in the cells and animal models were also evaluated.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Mice , Angiotensin-Converting Enzyme 2 , Caco-2 Cells , COVID-19/virology , Mice, Transgenic , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus , Virulence
10.
EBioMedicine ; 75: 103803, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34979342

ABSTRACT

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) pandemic has been a great threat to global public health since 2020. Although the advance on vaccine development has been largely achieved, a strategy to alleviate immune overactivation in severe COVID-19 patients is still needed. The NLRP3 inflammasome is activated upon SARS-CoV-2 infection and associated with COVID-19 severity. However, the processes by which the NLRP3 inflammasome is involved in COVID-19 disease remain unclear. METHODS: We infected THP-1 derived macrophages, NLRP3 knockout mice, and human ACE2 transgenic mice with live SARS-CoV-2 in Biosafety Level 3 (BSL-3) laboratory. We performed quantitative real-time PCR for targeted viral or host genes from SARS-CoV-2 infected mouse tissues, conducted histological or immunofluorescence analysis in SARS-CoV-2 infected mouse tissues. We also injected intranasally AAV-hACE2 or intraperitoneally NLRP3 inflammasome inhibitor MCC950 before SARS-CoV-2 infection in mice as indicated. FINDINGS: We have provided multiple lines of evidence that the NLRP3 inflammasome plays an important role in the host immune response to SARS-CoV-2 invasion of the lungs. Inhibition of the NLRP3 inflammasome attenuated the release of COVID-19 related pro-inflammatory cytokines in cell cultures and mice. The severe pathology induced by SARS-CoV-2 in lung tissues was reduced in Nlrp3-/- mice compared to wild-type C57BL/6 mice. Finally, specific inhibition of the NLRP3 inflammasome by MCC950 alleviated excessive lung inflammation and thus COVID-19 like pathology in human ACE2 transgenic mice. INTERPRETATION: Inflammatory activation induced by SARS-CoV-2 is an important stimulator of COVID-19 related immunopathology. Targeting the NLRP3 inflammasome is a promising immune intervention against severe COVID-19 disease. FUNDING: This work was supported by grants from the Bureau of Frontier Sciences and Education, CAS (grant no. QYZDJ-SSW-SMC005 to Y.G.Y.), the key project of the CAS "Light of West China" Program (to D.Y.) and Yunnan Province (202001AS070023 to D.Y.).


Subject(s)
COVID-19 , Lung , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Disease Models, Animal , Humans , Lung/immunology , Lung/pathology , Lung/virology , Macrophages/immunology , Macrophages/pathology , Macrophages/virology , Male , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , SARS-CoV-2/genetics , THP-1 Cells
12.
Mol Biomed ; 2(1): 29, 2021.
Article in English | MEDLINE | ID: mdl-34766005

ABSTRACT

In the face of the emerging variants of SARS-CoV-2, there is an urgent need to develop a vaccine that can induce fast, effective, long-lasting and broad protective immunity against SARS-CoV-2. Here, we developed a trimeric SARS-CoV-2 S protein vaccine candidate adjuvanted by PIKA, which can induce robust cellular and humoral immune responses. The results showed a high level of neutralizing antibodies induced by the vaccine was maintained for at least 400 days. In the study of non-human primates, PIKA adjuvanted S-trimer induced high SARS-CoV-2 neutralization titers and protected from virus replication in the lung following SARS-CoV-2 challenge. In addition, the long-term neutralizing antibody response induced by S-trimer vaccine adjuvanted by PIKA could neutralize multiple SARS-CoV-2 variants and there is no obvious different among the SARS- CoV-2 variants of interest or concern, including B.1.351, B.1.1.7, P.1, B.1.617.1 and B.1.617.2 variants. These data support the utility of S-trimer protein adjuvanted by PIKA as a potential vaccine candidate against SARS-CoV-2 infection. Supplementary Information: The online version contains supplementary material available at 10.1186/s43556-021-00054-z.

14.
Front Cell Infect Microbiol ; 11: 701820, 2021.
Article in English | MEDLINE | ID: mdl-34532298

ABSTRACT

Infection with Japanese encephalitis virus (JEV) induces high morbidity and mortality, including potentially permanent neurological sequelae. However, the mechanisms by which viruses cross the blood-brain barrier (BBB) and invade into the central nervous system (CNS) remain unclear. Here, we show that extracellular HMGB1 facilitates immune cell transmigration. Furthermore, the migration of immune cells into the CNS dramatically increases during JEV infection which may enhance viral clearance, but paradoxically expedite the onset of Japanese encephalitis (JE). In this study, brain microvascular endothelial cells (BMECs) were utilized for the detection of HMGB1 release, and leucocyte, adhesion, and the integrity of the BBB in vitro. Genetically modified JEV-expressing EGFP (EGFP-JEV) and the BBB model were established to trace JEV-infected immune cell transmigration, which mimics the process of viral neuroinfection. We find that JEV causes HMGB1 release from BMECs while increasing adhesion molecules. Recombinant HMGB1 enhances leukocyte-endothelium adhesion, facilitating JEV-infected monocyte transmigration across endothelia. Thus, JEV successfully utilizes infected monocytes to spread into the brain, expanding inside of the brain, and leading to the acceleration of JE onset, which was facilitated by HMGB1. HMGB1-promoted monocyte transmigration may represent the mechanism of JEV neuroinvasion, revealing potential therapeutic targets.


Subject(s)
Encephalitis Virus, Japanese/pathogenicity , Encephalitis, Japanese/immunology , HMGB1 Protein , Monocytes/cytology , Animals , Brain , Cell Adhesion , Cell Movement , Disease Models, Animal , Endothelial Cells , Endothelium , Female , Mice, Inbred C57BL , Virus Internalization
15.
Front Oncol ; 11: 691771, 2021.
Article in English | MEDLINE | ID: mdl-34222020

ABSTRACT

Cancer patients usually suffer from unfavorable prognosis, particularly with the occurrence of brain metastasis of lung cancer. The key incident of brain metastasis initiation is crossing of blood-brain barrier (BBB) by cancer cells. Although preventing brain metastasis is a principal goal of cancer therapy, the cellular mechanisms and molecular regulators controlling the transmigration of cancer cells into the brain are still not clearly illustrated. We analyzed the mRNA expression profiles of metastatic brain tissues and TNF-α treated cancer cells to understand the changes in adhesion molecule expression during the tumor phase. To imitate the tumor microenvironment, an in vitro model was developed and the low or high metastatic potential lung tumor cells (A549 or H358) were cultured with the human brain microvascular endothelial cells (hBMECs) under TNF-α treatment. The analysis of online database indicated an altered expression for adhesion molecules and enrichment of their associated signaling pathways. TNF-α treatment activated hBMECs via up-regulating several adhesion molecules, including ICAM1, CD112, CD47, and JAM-C. Meanwhile, TNF-α induced an increased expression of adhesion molecule ligands such as ALCAM and CD6 in both A549 and H358. Moreover, the expression of adhesion molecules and the ligands were also increased both in A549- or H358-hBMECs mixed culture system, which promoted tumor cells adhesion to endothelial cells. These results suggested that the enhanced interaction between tumor cells and brain microvascular endothelium might facilitate the incidence of metastatic brain tumors and further offer a better comprehension of brain metastasis prevention and treatment.

16.
Science ; 371(6536): 1374-1378, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33602867

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing Mpro inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals. All compounds inhibited SARS-CoV-2 Mpro activity in vitro, with 50% inhibitory concentration values ranging from 7.6 to 748.5 nM. The cocrystal structure of Mpro in complex with MI-23, one of the most potent compounds, revealed its interaction mode. Two compounds (MI-09 and MI-30) showed excellent antiviral activity in cell-based assays. In a transgenic mouse model of SARS-CoV-2 infection, oral or intraperitoneal treatment with MI-09 or MI-30 significantly reduced lung viral loads and lung lesions. Both also displayed good pharmacokinetic properties and safety in rats.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Chemokine CXCL10/metabolism , Disease Models, Animal , Drug Design , Humans , Interferon-beta/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Oligopeptides , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Protease Inhibitors/toxicity , Rats , Rats, Sprague-Dawley , Viral Load/drug effects , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...